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Introduction 

Recently, I.K. Khanna and V.S.Bhagavan 

[3] studied some properties of ;(nu β
generating functions with the help of the 
representation theory of SL(2,C)  i.e., a  complex 
special linear group. It is a worth noting  that the 

polynomial set );;( xnu γβ  is a product of  x

hypergeometric function which enable to derive 
different types of generating functions. Because of 
the important role which hypergeometric 
polynomials/functions play in problems of physics 
and applied mathematics , the theory of generating 
functions has been developed into various directions 
and found wide applications in various branches of 
analysis namely infinite series ,  linear differential 
equations, statistics  distributions, operations research 
and functions of a complex variables . The 
hypergeometric functions have also retained its 
significance in science and  technology . In this paper 
, an attempt is made to derive  integral 
representations of   various types  to  the generalized 

hypergeometric polynomial set  

including  addition and multiplication theorems  and 
finite difference formula. 

The principle interest in our results  lies in 
the fact that a number of special cases would yield 
inevitably to many new and known results of the 
theory of special functions  of  vari
orthogonal polynomials namely the Laguerre , 
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Meixner, Gottlieb, Krawchouk and Mexiner
Pollaczek polynomials are derived as the special 
cases of our results  
 
 Definition 
 S.D.Bajpai and M.S.Arora [2]  studied  the 
semi-orthogonality property and an integral involving 

Fox’s H-function of  ;;( xnu γβ
                             );;( xnu γβ

]
1

;;,[  12 x
nFxn γβ−=  ,   (2.1)

where n is a non- negative integer , x is any non
complex variable and γβ ,  are independent    of n. 

Remark: If γβ ,  are dependent of n then many 

properties which are valid for β ,
of n fail to be valid for γβ ,  dependent upon  n.

The aim of the present paper is to studied 
some more interesting classical proprieties of this 
function such as  addition, multiplication formulae, 
finite difference formula and integral re

of the various types. The function  

satisfies the differential equation
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      where )(xLn
α is the Laguerre polynomial . [9]  
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      where ργ ,;(YM n ) is the Mexiner polynomial.[10]    
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      where ),( λφ Yn is the Gottlieb polynomial.[9]  
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      where ),;( NPYKn is the Krawtchouk polynomial.[10]    
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    where );( φλ yPn is the Miexner –pollaczek polynomial.[10]  

 
Preliminaries: To find the addition , multiplication formulae , finite difference formula and integral representations 
of the various types, we have used the well known results [8] :  
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where y < ρρ ,  being the radius of convergence of the analytic function f(x). 

4. { } ),()1()( αααα fff −+=∆
 

 

Addition and Multiplication Formulae 
Theorem: Prove that 
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Hence the proof of the theorem. 
 
Finite Difference Formula 
Theorem: Prove that  
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Hence the theorem. 
 
Integral Representations 
The following types of integral representations for the polynomial set );;( xnu γβ  have been discussed 

I. Contour integral representation, 
II. Real integral representation, 

III.  Infinite single integral representation  
And 

IV.  Finite single integral representation  
 

The existence of these representations directly depend upon the uniform convergence of the integrals. 
 
  I .Contour Integral Representation 

 Consider the generating  relation [2] for the polynomial set ( )xun ;;γβ  i.e., 
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Thus  from (2.11) ,(2.12) and (2.13), we arrive at the following theorem. 
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where the contour of integration encircles  the origin of the t-plane in the positive direction. 

II.Real Integral Representation  

 If,  in  equation (2.14), we replace the contour   t   by   θie    then we get   
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III. Infinite single integral representation. 

As we know that                
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IV. Finite Single Integral Representation.  
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Thus, we conclude  
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Remark: In a similar way, one can be deduced many more representations namely Finite Double Integral 
Representation and Infinite Double Integral  Representation etc., which are of great importance  in the theory of 
special functions of mathematical physics. 
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